Xét các số thực x, y thỏa mãn \({{x}^{2}}+{{y}^{2}}>1 \) và \({{ \log }_{{{x}^{2}}+{{y}^{2}}}} \left( 2x+3y \right) \ge 1 \). Giá trị lớn nhất \({{P}_{ \max }} \) cửa biểu thức \(P=2x+y \) bằng:
A.\({{P}_{\max }}=\frac{7-\sqrt{10}}{2}\)
B. \({{P}_{\max }}=\frac{19+9\sqrt{11}}{2}\)
C. \({{P}_{\max }}=\frac{7+\sqrt{65}}{2}\)
D. \({{P}_{\max }}=\frac{11+10\sqrt{2}}{3}\)