Đáp án:
b) \(\begin{array}{l}
f\left( x \right) > 0 \Leftrightarrow x \in \left( {3; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ;3} \right)
\end{array}\)
Giải thích các bước giải:
a) BXD:
x -∞ 3/2 +∞
f(x) + 0 -
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;\dfrac{3}{2}} \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( {\dfrac{3}{2}; + \infty } \right)
\end{array}\)
b) BXD:
x -∞ 3 +∞
f(x) - 0 +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( {3; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ;3} \right)
\end{array}\)
c) BXD:
x -∞ -2 2 +∞
f(x) + 0 - 0 +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - 2;2} \right)
\end{array}\)
\(d)DK:x \ne 2\)
BXD:
x -∞ 3/2 2 +∞
f(x) - 0 + // -
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( {\dfrac{3}{2};2} \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ;\dfrac{3}{2}} \right) \cup \left( {2; + \infty } \right)
\end{array}\)
e) BXD:
x -∞ -3 1/2 +∞
f(x) + 0 - 0 +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {\dfrac{1}{2}; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - 3;\dfrac{1}{2}} \right)
\end{array}\)
f) BXD:
x -∞ -3 -2 -1 +∞
f(x) + 0 - 0 + 0 -
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( { - 2; - 1} \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - 3; - 2} \right) \cup \left( { - 1; + \infty } \right)
\end{array}\)
\(g)DK:x \ne 1\)
BXD:
x -∞ -2 -1/2 1 +∞
f(x) - 0 + 0 - // +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - 2; - \dfrac{1}{2}} \right) \cup \left( {1; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( { - \dfrac{1}{2};1} \right)
\end{array}\)
h) BXD:
x -∞ -2 1/4 5/3 7/2 +∞
f(x) - 0 + 0 - 0 + 0 -
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { - 2;\dfrac{1}{4}} \right) \cup \left( {\dfrac{5}{3};\dfrac{7}{2}} \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {\dfrac{1}{4};\dfrac{5}{3}} \right) \cup \left( {\dfrac{7}{2}; + \infty } \right)
\end{array}\)