Đáp án:
`F=1`
Giải thích các bước giải:
`F = (1/7 + 1/23 - 1/1009 )÷( 1/23 + 1/7 - 1/1009 + 1/7 × 1/23 × 1/1009 ) + 1÷(30 × 1009 -160)`
`=((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009))÷((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009)+1/7xx1/23xx1/1009)+1÷(30xx1009-160)`
`=((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009))÷((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009)+1/(7xx23xx1009))+1/(30xx1009-160)`
`=((23xx1009+7xx1009-7xx23)/(7xx23xx1009))÷((23xx1009+7xx1009-7xx23+1)/(7xx23xx1009))+1/(30xx1009-160)`
`=(23xx1009+7xx1009-7xx23)/(23xx1009+7xx1009-7xx23+1)+1/(30xx1009-160)`
`=(30xx1009-161)/(30xx1009-160)+1/(30xx1009-160)`
`=(30xx1009-161+1)/(30xx1009-160)`
`=(30xx1009-160)/(30xx1009-160)`
`=1`