Đáp án:
4) \(0 \le x < 4\)
Giải thích các bước giải:
\(\begin{array}{l}
1)DK:x \ge 0;x \ne 4\\
F = \dfrac{{2x - \sqrt x + 2}}{{x - 4}} + \dfrac{1}{{\sqrt x + 2}} - \dfrac{{\sqrt x }}{{\sqrt x - 2}}\\
= \dfrac{{2x - \sqrt x + 2 + \sqrt x - 2 - \sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{2x - x - 2\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x - 2\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 2}}\\
2)TH1:F > 1\\
\Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 2}} > 1\\
\to \dfrac{{\sqrt x - \sqrt x - 2}}{{\sqrt x + 2}} > 0\\
\to - \dfrac{2}{{\sqrt x + 2}} > 0\\
\to \sqrt x + 2 < 0\left( {voly} \right)\\
Do:\sqrt x + 2 > 0\forall x \ge 0\\
\to F > 1\left( {KTM} \right)\\
TH2:F < 1\\
\to \dfrac{{\sqrt x }}{{\sqrt x + 2}} < 1\\
\to \dfrac{{\sqrt x - \sqrt x - 2}}{{\sqrt x + 2}} < 0\\
\to - \dfrac{2}{{\sqrt x + 2}} < 0\\
\to \sqrt x + 2 > 0\left( {ld} \right)\\
\to F < 1\left( {TM} \right)\\
3)Thay:x = 16\\
\to F = \dfrac{{\sqrt {16} }}{{\sqrt {16} + 2}} = \dfrac{4}{6} = \dfrac{2}{3}\\
4)F < \dfrac{1}{2}\\
\to \dfrac{{\sqrt x }}{{\sqrt x + 2}} < \dfrac{1}{2}\\
\to \dfrac{{2\sqrt x - \sqrt x - 2}}{{2\left( {\sqrt x + 2} \right)}} < 0\\
\to \dfrac{{\sqrt x - 2}}{{2\left( {\sqrt x + 2} \right)}} < 0\\
\to \sqrt x - 2 < 0\left( {do:2\left( {\sqrt x + 2} \right) > 0\forall x \ge 0} \right)\\
\to x < 4\\
\to 0 \le x < 4
\end{array}\)