Đáp án:
tham khảo ≈ω
Giải thích các bước giải:
`-5/3-|2x-1|:3/5=-2`
`-|2x-1|:3/5=-2+5/3`
`-|2x-1|:3/5=-1/3`
`-|2x-1|=-1/3.(3)/5`
`|2x-1|=1/5`
\(\left[ \begin{array}{l}2x-1 = \dfrac{1}{5}\\2x-1=\dfrac{-1}{5}\end{array} \right.\)
\(\left[ \begin{array}{l}2x = \dfrac{1}{5} +1\\2x=\dfrac{-1}{5}+1\end{array} \right.\)
\(\left[ \begin{array}{l}2x = \dfrac{6}{5} \\2x=\dfrac{4}{5}\end{array} \right.\)
\(\left[ \begin{array}{l}x = \dfrac{6}{5}:2 \\x=\dfrac{4}{5}:2\end{array} \right.\)
\(\left[ \begin{array}{l}x = \dfrac{3}{5} \\x=\dfrac{2}{5}\end{array} \right.\)
vậy `x\in{\frac{3}{5};\frac{2}{5}}`