Đáp án: g)x^5+x^4+1=x^5-x^2+x^4-x+x^2+x+1=x^2(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)(x^3-x^2+x^2-x+1)=(x^2+x+1)(x^3-x+1)
h) x^5+x+1=x^5-x^2+x^2+x+1=x^2(x-1)(x^2+x+1)+(x^2+x+1)=(x^2+x+1)(x^3-x^2+1)
i)x^8+x^7+1=x^8-x^2+x^7-x+x^2+x+1=x^2(x^6-1)+x(x^6-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)=(x^2+x+1)(x^6+x^3-x^4-x+1)
k) x^5-x^4-1=x^5+x^2-x^4-x-x^2+x-1=x^2(x+1)(x^2-x+1)-x(x+1)(x^2-x+1)-(x^2-x+1)=(x^2-x+1)(x^3+x^2-x^2-x-1)=(x^2-x+1)(x^3-x-1)
l)x^7+x^5+1=x^7-x+x^5-x^2+x^2+x+1=x(x^3+1)(x^3-1)+x^2(x^3-1)+(x^2+x+1)=x(x^3+1)(x-1)(x^2+x+1)+x^2(x-1)(x^2+x+1)+(x^2+x+1)=(x^2+x+1)(x^5-x^4+x^3-x+1)
m)x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^3+1)(x^3-1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+(x^2+x+1)=(x^2+x+1)(x^6-x^5+x^3-x+1)