`A = 3 + 3^{2} + ...+3^{2020}`
`A = (3 + 3^{2}) + (3^{3} + 3^{4}) + ...+(3^{2019} + 3^{2020})`
`A = 3 . (1 + 3) + 3^{3} . (1 + 3) + ...+3^{2019} . (1 + 3)`
`A = 3 . 4 + 3^{3} . 4 + ...+3^{2019} . 4`
`A = 4 . (3 + 3^{3} +...+ 3^{2019})`
$\text{Vì}$ `4 \vdots 4` $\text{nên}$ `(3 + 3^{3} +...+ 3^{2019}) \vdots 4`
$\Rightarrow$ `A = (3 + 3^{2} + ...+3^{2020}) \vdots 4`
_________________________
$\text{Ta có:}$ `x + 9 \vdots x + 2`
$\text{Mà:}$ `x + 2 \vdots x + 2`
$\text{Lập hiệu:}$ `(x + 9) - (x + 2) \vdots (x + 2)`
`= x + 9 - x - 2 \vdots (x + 2)`
`= (x - x) + (9 - 2) \vdots (x + 2)`
`= 7 \vdots (x + 2)`
$\text{Vì}$ `x \in \mathbb{N} => x + 2 \in \mathbb{N} `
`=> x + 2 \in Ư(7) = {1;7}`
$\text{Lập bảng giá trị}$
`x + 2` `1` `7`
`x` `-1` `5`
$\text{Vậy}$ `x = 5`