Đáp án:
Giải thích các bước giải:
`M=\sqrt{4-2\sqrt{3}}-\frac{2}{\sqrt{3}+1}+\frac{\sqrt{3}-3}{\sqrt{3}-1}`
`M=\sqrt{3+1-2\sqrt{3}}-\frac{2(\sqrt{3}-1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{\sqrt{3}(1-\sqrt{3})}{\sqrt{3}-1}`
`M=\sqrt{(\sqrt{3}-1)^2}-\frac{2(\sqrt{3}-1)}{2}-\frac{\sqrt{3}(\sqrt{3}-1)}{\sqrt{3}-1}`
`M=|\sqrt{3}-1|-(\sqrt{3}-1)-\sqrt{3}`
`M=\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}`
`M=-\sqrt{3}`
`N=\frac{3}{\sqrt{2}-1}-\frac{3\sqrt{6}-3\sqrt{10}}{\sqrt{3}-\sqrt{5}}`
`N=\frac{3(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}-\frac{3\sqrt{2}.\sqrt{3}-3\sqrt{2}.\sqrt{5}}{\sqrt{3}-\sqrt{5}}`
`N=3(\sqrt{2}+1)-\frac{3\sqrt{2}(\sqrt{3}-\sqrt{5})}{\sqrt{3}-\sqrt{5}}`
`N=3\sqrt{2}+3-3\sqrt{2}`
`N=3`