Giả sử \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^x}\). Tính tích \(P = abc\). A.\(P = - 4\) B.\(P = 1\) C.\(P = - 5\) D.\(P = - 3\)
Phương pháp giải: \(F\left( x \right)\) là 1 nguyên hàm của hàm số \(f\left( x \right)\) thì \(F'\left( x \right) = f\left( x \right)\). Giải chi tiết:Vì \(F\left( x \right)\) là 1 nguyên hàm của hàm số \(f\left( x \right)\) nên ta có \(F'\left( x \right) = f\left( x \right)\). \(\begin{array}{l}F'\left( x \right) = \left( {2ax + b} \right){e^x} + \left( {a{x^2} + bx + c} \right){e^x}\\F'\left( x \right) = \left( {a{x^2} + bx + c + 2ax + b} \right){e^x}\\F'\left( x \right) = \left[ {a{x^2} + \left( {2a + b} \right)x + b + c} \right]{e^x}\end{array}\) Đồng nhất hệ số ta có: \(\left\{ \begin{array}{l}a = 1\\2a + b = 0\\b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 2\end{array} \right.\). Vậy \(P = abc = 1.\left( { - 2} \right).2 = - 4.\) Chọn A.