\(\begin{array}{l}
1)\\
\quad y = \dfrac{\sin x}{x} + \dfrac{x}{\sin x}\\
\to y' = \dfrac{(\sin x)'.x - \sin x.(x)'}{x^2} + \dfrac{(x)'.\sin x - x.(\sin x)'}{\sin^2x}\\
\to y' = \dfrac{x\cos x - \sin x}{x^2} + \dfrac{\sin x -x\cos x}{\sin x^2}\\
\to y' = (\sin x-x\cos x)\left(\dfrac{1}{\sin^2x} - \dfrac{1}{x^2}\right)\\
2)\\
\quad y = \tan(\sin x)\\
\to y' = \dfrac{(\sin x)'}{\cos^2(\sin x)}\\
\to y' = \dfrac{\cos x}{\cos^2(\sin x)}
\end{array}\)