`a) \ \ (x-3)^2<x^2-5x+4`
`<=> x^2-6x+9<x^2-5x+4`
`<=> -6x+5x<4-9`
`<=> -x<-5`
`<=> x>5`
Vậy `S={x|x>5}`
`b) \ \ (x-3)(x+3) <= (x+2)^2+3`
`<=> x^2-9 <= x^2+4x+4+3`
`<=> x^2-x^2-4x <= 4+3+9`
`<=> -4x <= 16`
`<=> x >= -4`
Vậy `S={x|x>=-4}`
`c) \ \ (4x-5)/3 > (7-x)/5`
`<=> (5(4x-5))/15 > (3(7-x))/15`
`<=> 20x-25>21-3x`
`<=> 20x+3x>21+25`
`<=> 23x>46`
`<=> x>2`
Vậy `S={x|x>2}`
`d) \ \ (2x+1)/2 + 3 >= (3-5x)/3 - (4x+1)/4`
`<=> (6(2x+1)+3.12)/12 >= (4.(3-5x)-3.(4x+1))/12`
`<=> 12x+6+36 >= 12-20x-12x-3`
`<=> 12x+20x+12x >= 12-3-6-36`
`<=> 44x >= -33`
`<=> x >= -3/4`
Vậy `S={x|x>=-3/4}`