Đáp án:
\[S = \left( { - \frac{3}{2}; - \frac{1}{4}} \right)\]
Giải thích các bước giải:
TXĐ: \({\rm{D = R}}\)
Ta có:
\(\begin{array}{l}
\left| {3x + 2} \right| < - x + 1\\
\Leftrightarrow \left\{ \begin{array}{l}
- x + 1 > 0\\
- \left( { - x + 1} \right) < 3x + 2 < - x + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x - 1 < 0\\
x - 1 < 3x + 2 < - x + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < 1\\
3x + 2 > x - 1\\
3x + 2 < - x + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < 1\\
2x > - 3\\
4x < - 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x < 1\\
x > - \frac{3}{2}\\
x < - \frac{1}{4}
\end{array} \right.\\
\Leftrightarrow - \frac{3}{2} < x < - \frac{1}{4}
\end{array}\)
Vậy tập nghiệm của bất phương trình đã cho là \(S = \left( { - \frac{3}{2}; - \frac{1}{4}} \right)\)