Đáp án:
Giải thích các bước giải:
`1)2x^2-3(x-2)-1=10`
`<=>2x^2-3x+6-1-10=0`
`<=>2x^2-3x-5=0`
`<=>(2x-5)(x+1)=0`
`<=>` \(\left[ \begin{array}{l}2x-5=0\\x+1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=\dfrac{5}{2}\\x=-1\end{array} \right.\)
Vậy `S={-1;5/2}`
`2)4x^2+2x=-3(x-2)`
`<=>4x^2+2x=-3x+6`
`<=>4x^2+2x+3x-6=0`
`<=>4x^2+5x-6=0`
`<=>(4x-3)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}4x-3=0\\x+2=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=\dfrac{3}{4}\\x=-2\end{array} \right.\)
Vậy `S={-2;3/4}`
`3)2x(x-3)=3x-7`
`<=>2x^2-6x-3x+7=0`
`<=>2x^2-9x+7=0`
`<=>(2x-7)(x-1)=0`
`<=>` \(\left[ \begin{array}{l}2x-7=0\\x-1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=\dfrac{7}{2}\\x=1\end{array} \right.\)
Vậy `S={7/2;1}`
`4)2x(x+1)=x(x-2)+5`
`<=>2x^2+2x=x^2-2x+5`
`<=>2x^2-x^2+2x+2x-5=0`
`<=>x^2+4x-5=0`
`<=>(x-1)(x+5)=0`
`<=>` \(\left[ \begin{array}{l}x-1=0\\x+5=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.\)
Vậy `S={-5;1}`
`5)(x-2)(x+3)-6=0`
`<=>x^2+x-12=0`
`<=>(x-3)(x+4)=0`
`<=>` \(\left[ \begin{array}{l}x-3=0\\x+4=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\)
Vậy `S={-4;3}`
`6)(x+2)(x-5)+6=0`
`<=>x^2-3x-4=0`
`<=>(x+1)(x-4)=0`
`<=>` \(\left[ \begin{array}{l}x+1=0\\x-4=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=-1\\x=4\end{array} \right.\)
Vậy `S={-1;4}`
`7)(x-1)(3x+2)=x^2`
`<=>3x^2-x-2=x^2`
`<=>2x^2-x-2=0`
`<=>(\sqrt{2}x)^2-2.\sqrt{2}x. 1/(2\sqrt{2})+1/8-17/8=0`
`<=>(\sqrt{2}x-1/(2\sqrt{2}))^2=17/8`
`<=>` \(\left[ \begin{array}{l}\sqrt{2}x-\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{17}}{2\sqrt{2}}\\\sqrt{2}x-\dfrac{1}{2\sqrt{2}}=\dfrac{-\sqrt{17}}{2\sqrt{2}}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}\sqrt{2}x=\dfrac{\sqrt{17}+1}{2\sqrt{2}}\\\sqrt{2}x=\dfrac{-\sqrt{17}+1}{2\sqrt{2}}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac{\sqrt{17}+1}{4}\\x=\dfrac{-\sqrt{17}+1}{14}\end{array} \right.\)
`8)(3x+2)(x-5)=x(2-x)-5`
`<=>3x^2-13x-10=2x-x^2-5`
`<=>4x^2-15x-5=0`
`\Delta=(-15)^2-4.4.(-15)=305`
`=>x=(-(-15)+-\sqrt{305})/(2.4)=(15+-\sqrt{305})/8`
`9)(3x-1)(x+5)=12`
`<=>3x^2+14x-17=0`
`<=>(3x+17)(x-1)=0`
`<=>` \(\left[ \begin{array}{l}3x+17=0\\x-1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{17}{3}\\x=1\end{array} \right.\)
Vậy `S={-17/3;1}`
`10)x^2+(3x-1)(x-2)+1=0`
`<=>4x^2-7x+3=0`
`<=>(4x-3)(x-1)=0`
`<=>` \(\left[ \begin{array}{l}4x-3=0\\x-1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=\dfrac{3}{4}\\x=1\end{array} \right.\)
Vậy `S={3/4;1}`