Đáp án:
$\begin{array}{l}
{\left( {x - 1} \right)^3} - x{\left( {x + 1} \right)^2} = 5x\left( {2 - x} \right) - 11\left( {x + 2} \right)\\
\Rightarrow {x^3} - 3{x^2} + 3x - 1 - \left( {{x^3} + 2{x^2} + x} \right) = 10x - 5{x^2} - 11x - 22\\
\Rightarrow - 5{x^2} + 2x - 1 = - 5{x^2} - x - 22\\
\Rightarrow 3x = - 21\\
\Rightarrow x = - 7\\
Vậy\,x = - 7\\
\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - 2x = x\left( {x - 1} \right)\left( {x + 1} \right)\\
\Rightarrow {x^3} + 1 - 2x = x\left( {{x^2} - 1} \right)\\
\Rightarrow {x^3} - 2x + 1 = {x^3} - x\\
\Rightarrow x = 1\\
Vậy\,x = 1
\end{array}$