Đáp án:
\[\dfrac{2}{{{7^{1021}}}}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\dfrac{{{{\left( { - 7} \right)}^{2010}}{{.6}^{2021}}}}{{{{28}^{1010}}{{.3}^{2021}}{{.7}^{2021}}}}\\
= \dfrac{{{7^{2010}}.{{\left( {2.3} \right)}^{2021}}}}{{{{\left( {{{7.2}^2}} \right)}^{1010}}{{.3}^{2021}}{{.7}^{2021}}}}\\
= \dfrac{{{7^{2010}}{{.2}^{2021}}{{.3}^{2021}}}}{{{7^{1010}}.{{\left( {{2^2}} \right)}^{1010}}{{.3}^{2021}}{{.7}^{2021}}}}\\
= \dfrac{{{7^{2010}}{{.2}^{2021}}{{.3}^{2021}}}}{{{7^{3031}}{{.2}^{2020}}{{.3}^{2021}}}}\\
= \dfrac{2}{{{7^{1021}}}}
\end{array}\)