Đáp án:
Giải thích các bước giải:
$\text{($\frac{3\sqrt[]{2}-\sqrt[]{6}}{\sqrt[]{12}-2}$ -$\frac{\sqrt[]{294}}{2}$).$\frac{1}{\sqrt[]{6}}$}$
=$\text{($\frac{3\sqrt[]{2}-\sqrt[]{6}}{\sqrt[]{12}-\sqrt[]{4}}$ -$\frac{\sqrt[]{294}}{\sqrt[]{4}}$).$\frac{1}{\sqrt[]{6}}$}$
=$\text{($\frac{\sqrt[]{6}(\sqrt[]{3}-1)}{\sqrt[]{4}(\sqrt[]{3}-1)}$ -$\frac{\sqrt[]{2.147}}{\sqrt[]{2.2}}$).$\frac{1}{\sqrt[]{6}}$}$
=$\text{($\frac{\sqrt[]{3}}{\sqrt[]{2}}$ -$\frac{\sqrt[]{147}}{\sqrt[]{2}}$).$\frac{1}{\sqrt[]{6}}$}$
=$\text{($\frac{\sqrt[]{3}-\sqrt[]{147}}{\sqrt[]{2}}$}$).$\frac{1}{\sqrt[]{6}}$
=$\text{($\frac{\sqrt[]{3}-7\sqrt[]{3}}{\sqrt[]{2}}$}$).$\frac{1}{\sqrt[]{6}}$
=$\text{$\frac{-6\sqrt[]{3}}{\sqrt[]{2}}$}$.$\frac{1}{\sqrt[]{6}}$
=$\text{-3$\sqrt[]{6}$}$.$\frac{1}{\sqrt[]{6}}$=$\text{-3}$