Đáp án:
a) ${a > 0;a \ne 4}$
b) $M= \dfrac{{ - 2}}{{a - 4}}$
c) $0<a<4$
Giải thích các bước giải:
a) M có nghĩa
$ \Leftrightarrow \left\{ \begin{array}{l}
a \ge 0\\
a + 4\sqrt a + 4 \ne 0\\
a - 4 \ne 0\\
a \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a > 0\\
a \ne 4\\
{\left( {\sqrt a + 2} \right)^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a > 0\\
a \ne 4
\end{array} \right.$
b) ĐKXĐ: ${a > 0;a \ne 4}$
Ta có:
$\begin{array}{l}
M = \left( {\dfrac{{\sqrt a + 1}}{{a + 4\sqrt a + 4}} - \dfrac{{\sqrt a - 1}}{{a - 4}}} \right).\dfrac{{\sqrt a + 2}}{{\sqrt a }}\\
= \left( {\dfrac{{\sqrt a + 1}}{{{{\left( {\sqrt a + 2} \right)}^2}}} - \dfrac{{\sqrt a - 1}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}} \right).\dfrac{{\sqrt a + 2}}{{\sqrt a }}\\
= \dfrac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 2} \right) - \left( {\sqrt a - 1} \right)\left( {\sqrt a + 2} \right)}}{{{{\left( {\sqrt a + 2} \right)}^2}\left( {\sqrt a - 2} \right)}}.\dfrac{{\sqrt a + 2}}{{\sqrt a }}\\
= \dfrac{{ - 2\sqrt a }}{{{{\left( {\sqrt a + 2} \right)}^2}\left( {\sqrt a - 2} \right)}}.\dfrac{{\sqrt a + 2}}{{\sqrt a }}\\
= \dfrac{{ - 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{ - 2}}{{a - 4}}
\end{array}$
Vậy $M= \dfrac{{ - 2}}{{a - 4}}$
c) Ta có:
$M > 0 \Leftrightarrow \dfrac{{ - 2}}{{a - 4}} > 0 \Leftrightarrow a - 4 < 0 \Leftrightarrow a < 4$
Kết hợp với ĐKXĐ ta có: $0<a < 4$
Vậy $0<a < 4$