Đáp án:
\(\begin{array}{l}
a,\,\,\,\,\,x = 2\\
b,\,\,\,\,\,\,x = 2\\
c,\,\,\,\,\,\,x = \dfrac{3}{4}\\
d,\,\,\,\,\,x = 5\\
e,\,\,\,\,\,\,x = \dfrac{8}{3}\\
g,\,\,\,\,\,x = - 3
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
DKXD:\,\,\,4x + 1 \ge 0 \Leftrightarrow x \ge - \dfrac{1}{4}\\
\sqrt {4x + 1} = 3\\
\Leftrightarrow {\sqrt {4x + 1} ^2} = {3^2}\\
\Leftrightarrow 4x + 1 = 9\\
\Leftrightarrow 4x = 8\\
\Leftrightarrow x = 2\\
b,\\
DKXD:\,\,\,\,x \ge - 2\\
\dfrac{1}{2}\sqrt {4x + 8} + \sqrt {36x + 72} = 16 - \sqrt {x + 2} \\
\Leftrightarrow \dfrac{1}{2}.\sqrt {4.\left( {x + 2} \right)} + \sqrt {36.\left( {x + 2} \right)} = 16 - \sqrt {x + 2} \\
\Leftrightarrow \dfrac{1}{2}.\sqrt 4 .\sqrt {x + 2} + \sqrt {36} .\sqrt {x + 2} + \sqrt {x + 2} = 16\\
\Leftrightarrow \dfrac{1}{2}.2\sqrt {x + 2} + 6\sqrt {x + 2} + \sqrt {x + 2} = 16\\
\Leftrightarrow \sqrt {x + 2} + 6\sqrt {x + 2} + \sqrt {x + 2} = 16\\
\Leftrightarrow 8\sqrt {x + 2} = 16\\
\Leftrightarrow \sqrt {x + 2} = 2\\
\Leftrightarrow x + 2 = 4\\
\Leftrightarrow x = 2\\
c,\\
DKXD:\,\,\,\forall x\\
\sqrt {{x^2} - 4x + 4} + 1 = 3x\\
\Leftrightarrow \sqrt {{x^2} - 2.x.2 + {2^2}} + 1 = 3x\\
\Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2}} = 3x - 1\\
\Leftrightarrow \left| {x - 2} \right| = 3x - 1\\
\Leftrightarrow \left\{ \begin{array}{l}
3x - 1 \ge 0\\
\left[ \begin{array}{l}
x - 2 = 3x - 1\\
x - 2 = 1 - 3x
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{1}{3}\\
\left[ \begin{array}{l}
x - 3x = - 1 + 2\\
x + 3x = 1 + 2
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{1}{3}\\
\left[ \begin{array}{l}
- 2x = 1\\
4x = 3
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{1}{3}\\
\left[ \begin{array}{l}
x = - \dfrac{1}{2}\\
x = \dfrac{3}{4}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow x = \dfrac{3}{4}\\
d,\\
DKXD:\,\,\,\,x \ge \dfrac{1}{2}\\
\sqrt {2x - 1} + 1 = 4\\
\Leftrightarrow \sqrt {2x - 1} = 3\\
\Leftrightarrow {\sqrt {2x - 1} ^2} = {3^2}\\
\Leftrightarrow 2x - 1 = 9\\
\Leftrightarrow 2x = 10\\
\Leftrightarrow x = 5\\
e,\\
DKXD:\,\,\,\,\,x \ge - \dfrac{1}{3}\\
3\sqrt {12x + 4} - \dfrac{8}{3}\sqrt {27x + 9} + \sqrt {48x + 16} = 6\\
\Leftrightarrow 3\sqrt {4.\left( {3x + 1} \right)} - \dfrac{8}{3}\sqrt {9\left( {3x + 1} \right)} + \sqrt {16.\left( {3x + 1} \right)} = 6\\
\Leftrightarrow 3.\sqrt 4 .\sqrt {3x + 1} - \dfrac{8}{3}.\sqrt 9 .\sqrt {3x + 1} + \sqrt {16} .\sqrt {3x + 1} = 6\\
\Leftrightarrow 3.2\sqrt {3x + 1} - \dfrac{8}{3}.3\sqrt {3x + 1} + 4\sqrt {3x + 1} = 6\\
\Leftrightarrow 6\sqrt {3x + 1} - 8\sqrt {3x + 1} + 4\sqrt {3x + 1} = 6\\
\Leftrightarrow 2\sqrt {3x + 1} = 6\\
\Leftrightarrow \sqrt {3x + 1} = 3\\
\Leftrightarrow {\sqrt {3x + 1} ^2} = {3^2}\\
\Leftrightarrow 3x + 1 = 9\\
\Leftrightarrow 3x = 8\\
\Leftrightarrow x = \dfrac{8}{3}\\
g,\\
DKXD:\,\,\,\,\left\{ \begin{array}{l}
{x^2} - 9 \ge 0\\
x + 3 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 3} \right)\left( {x + 3} \right) \ge 0\\
x \ge - 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x \ge 3\\
x \le - 3
\end{array} \right.\\
x \ge - 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x \ge 3\\
x = - 3
\end{array} \right.\\
\sqrt {{x^2} - 9} + \sqrt {x + 3} = 0\\
\Leftrightarrow \sqrt {\left( {x - 3} \right)\left( {x + 3} \right)} + \sqrt {x + 3} = 0\\
\Leftrightarrow \sqrt {x + 3} .\left( {\sqrt {x - 3} + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x + 3} = 0\\
\sqrt {x - 3} + 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + 3 = 0\\
\sqrt {x - 3} = - 1\,\,\,\,\,\,\,\left( {L,\,\,\,\sqrt {x - 3} \ge 0,\,\,\,\forall x \ge 3} \right)
\end{array} \right.\\
\Leftrightarrow x = - 3
\end{array}\)