Đáp án:
$\begin{array}{l}
4)a)Dkxd:x \ge 0;x \ne 4\\
P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x - 2} \right) - 2 - 5\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2 + 2x - 4\sqrt x - 2 - 5\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3x - 6\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3\sqrt x }}{{\sqrt x + 2}}\\
b)P = 2\\
\Leftrightarrow \dfrac{{3\sqrt x }}{{\sqrt x + 2}} = 2\\
\Leftrightarrow 3\sqrt x = 2\sqrt x + 4\\
\Leftrightarrow \sqrt x = 4\\
\Leftrightarrow x = 16\left( {tmdk} \right)\\
Vậy\,x = 16\\
5)a)Dkxd:a > 0;a \ne 1;a \ne 4\\
Q = \left( {\dfrac{1}{{\sqrt a - 1}} - \dfrac{1}{{\sqrt a }}} \right):\left( {\dfrac{{\sqrt a + 1}}{{\sqrt a - 2}} - \dfrac{{\sqrt a + 2}}{{\sqrt a - 1}}} \right)\\
= \dfrac{{\sqrt a - \left( {\sqrt a - 1} \right)}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\dfrac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right) - \left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}\\
= \dfrac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}.\dfrac{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}{{a - 1 - \left( {a - 4} \right)}}\\
= \dfrac{1}{{\sqrt a }}.\dfrac{{\sqrt a - 2}}{3}\\
= \dfrac{{\sqrt a - 2}}{{3\sqrt a }}\\
b)Q > 0\\
\Leftrightarrow \dfrac{{\sqrt a - 2}}{{3\sqrt a }} > 0\\
\Leftrightarrow \sqrt a - 2 > 0\left( {do:\sqrt a > 0} \right)\\
\Leftrightarrow \sqrt a > 2\\
\Leftrightarrow a > 4\\
Vậy\,a > 4
\end{array}$