Đáp án:
e) \(\left[ \begin{array}{l}
x = 4\\
x = 0
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)Q = \dfrac{{3x - 3\sqrt x - 3 - \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3x - 3\sqrt x - 3 - x + 1 - x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x - 3\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x + 2}}\\
b)Thay:x = 4 + 2\sqrt 3 = 3 + 2\sqrt 3 .1 + 1\\
= {\left( {\sqrt 3 + 1} \right)^2}\\
\to Q = \dfrac{{\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} - 2}}{{\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + 2}}\\
= \dfrac{{\sqrt 3 + 1 - 2}}{{\sqrt 3 + 1 + 2}} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 3}} = \dfrac{{ - 3 + 2\sqrt 3 }}{3}\\
c)Q = 3\\
\to \dfrac{{\sqrt x - 2}}{{\sqrt x + 2}} = 3\\
\to \sqrt x - 2 = 3\sqrt x + 6\\
\to 2\sqrt x = - 8\\
\to \sqrt x = - 4\left( l \right)\\
\to x \in \emptyset \\
d)Q > \dfrac{1}{2}\\
\to \dfrac{{\sqrt x - 2}}{{\sqrt x + 2}} > \dfrac{1}{2}\\
\to \dfrac{{2\sqrt x - 4 - \sqrt x - 2}}{{2\left( {\sqrt x + 2} \right)}} > 0\\
\to \dfrac{{\sqrt x - 6}}{{2\left( {\sqrt x + 2} \right)}} > 0\\
\to \sqrt x - 6 > 0\\
\to x > 36\\
e)Q = \dfrac{{\sqrt x - 2}}{{\sqrt x + 2}} = \dfrac{{\sqrt x + 2 - 4}}{{\sqrt x + 2}} = 1 - \dfrac{4}{{\sqrt x + 2}}\\
Q \in Z \Leftrightarrow \dfrac{4}{{\sqrt x + 2}} \in Z\\
\Leftrightarrow \sqrt x + 2 \in U\left( 4 \right)\\
Mà:\sqrt x + 2 \ge 2\forall x \ge 0\\
\to \left[ \begin{array}{l}
\sqrt x + 2 = 4\\
\sqrt x + 2 = 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = 2\\
\sqrt x = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 4\\
x = 0
\end{array} \right.
\end{array}\)