Đáp án + Giải thích các bước giải:
`1)1/{2-\sqrt{3}} + 1/{2+\sqrt{3}}`
`={2+\sqrt{3} + 2 - \sqrt{3}}/ {(2+\sqrt{3})(2-\sqrt{3})}`
`=4/{4-3}=4.`
`2)1/{2-\sqrt{5}} - 1/{2+\sqrt{5}}`
`={2+\sqrt{5}}/{(2+\sqrt{5})(2-\sqrt{5})}- {2-\sqrt{5}}/{(2+\sqrt{5})(2-\sqrt{5})}`
`={2+\sqrt{5}-2+\sqrt{5})/{(2+\sqrt{5})(2-\sqrt{5})}`
`={2\sqrt{5}}/{4-5}=-2\sqrt{5}.`
`3)` ĐKXĐ: `x\ne0,x\ne1.`
`{x-1}/{\sqrt{x}-1}+{x-1}/{\sqrt{x}+1}`
`={(\sqrt{x}-1)(\sqrt{x}+1)}/{\sqrt{x}-1}+{(\sqrt{x}-1)(\sqrt{x}+1)}/{\sqrt{x}+1}`
`=\sqrt{x}+1 + \sqrt{x}-1`
`=2\sqrt{x}.`
`4)`ĐKXĐ: `x\ne1,x\ne4.`
`{\sqrt{x}-1}/{x-1}-{\sqrt{x}+2}/{x-4}`
`={\sqrt{x}-1}/{(\sqrt{x}-1)(\sqrt{x}+1)} - {\sqrt{x}+2}/{(\sqrt{x}-2)(\sqrt{x}+2)}`
`=1/{\sqrt{x}+1} - 1/{\sqrt{x}-2}`
`={\sqrt{x}-2-\sqrt{x}-1}/{(\sqrt{x}+1)(\sqrt{x}-2)}`
`=-3/{x-\sqrt{x}-2}.`
`5)` ĐKXĐ: `x\ne0,x\ne1.`
`{1+x\sqrt{x}}/{1+\sqrt{x}} + {1-x\sqrt{x}}/{1-\sqrt{x}}`
`={1+(\sqrt{x})^3}/{1+\sqrt{x}} + {1-(\sqrt{x})^3}/{1-\sqrt{x}}`
`={(1+\sqrt{x})(1-\sqrt{x}+x)}/{1+\sqrt{x}} + {(1-\sqrt{x})(1+\sqrt{x}+x)}/{1-\sqrt{x}}`
`=1-\sqrt{x}+x+ 1+\sqrt{x}+x`
`=2+2x.`
_______________
Chú ý: `x\sqrt{x}=\sqrt{x}.\sqrt{x}.\sqrt{x}=(\sqrt{x})^3.`