Giải thích các bước giải:
\(\begin{array}{l}
C8:\\
\left\{ \begin{array}{l}
\frac{{2x - 1 + 3x - 3}}{3} < 0\\
\frac{{4 - 3x - 6 + 2x}}{2} < 0
\end{array} \right. \to \left\{ \begin{array}{l}
5x - 4 < 0\\
- x - 2 < 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x < \frac{4}{5}\\
x > - 2
\end{array} \right.\\
\to x \in \left( { - 2;\frac{4}{5}} \right)\\
C9:\left\{ \begin{array}{l}
x < 3\\
x < - 2
\end{array} \right.\\
\to x \in \left( { - \infty ; - 2} \right)\\
C10:\\
\left\{ \begin{array}{l}
x > \frac{2}{3}\\
x < 4 + m
\end{array} \right.
\end{array}\)
Để bpt có nghiệm
\(\begin{array}{l}
\Leftrightarrow 4 + m \le \frac{2}{3}\\
\Leftrightarrow m \le - \frac{{10}}{3}
\end{array}\)