Giải thích các bước giải:
\(\begin{array}{l}
a)\\
{x_1} = {v_{01}}t + \dfrac{1}{2}{a_1}{t^2} = 4t + {t^2}\\
{x_2} = 125 - ({v_{02}}t + \dfrac{1}{2}{a_2}{t^2}) = 125 - 6t - \frac{1}{2}{t^2}\\
b){x_1} = {x_2} \Rightarrow t = 6,38s \Rightarrow {x_1} = {x_2} = 66,2244m\\
{v_1} = {v_{01}} + {a_1}t = 16,76m/s;{s_1} = x = 66,2244m\\
{v_2} = {v_{02}} + {a_2}t = 12,38m/s;{s_2} = 125 - x = 58,7756m\\
c)\\
v_1^2 - {4^2} = 2.{a_1}.AB \Rightarrow {v_1} = 22,72m/s\\
v_2^2 - {6^2} = 2.{a_2}.AB \Rightarrow {v_2} = 16,91m/s\\
d)|{x_1} - {x_2}| = 50 \Rightarrow |\dfrac{3}{2}{t^2} + 10t - 125| = 50\\
\Rightarrow \left[ \begin{array}{l}
t = 7,97s\\
t = 4,48s
\end{array} \right.
\end{array}\)