Đáp án:
t) \(\left[ \begin{array}{l}
x = \dfrac{3}{4}\\
x = \dfrac{7}{{12}}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
n)\dfrac{2}{3}x = - \dfrac{3}{2} - \dfrac{1}{3}\\
\to \dfrac{2}{3}x = - \dfrac{{11}}{6}\\
\to x = - \dfrac{{11}}{4}\\
o)\left| {x - \dfrac{1}{4}} \right| = - \dfrac{7}{3} + \dfrac{5}{2}\\
\to \left| {x - \dfrac{1}{4}} \right| = \dfrac{1}{6}\\
\to \left[ \begin{array}{l}
x - \dfrac{1}{4} = \dfrac{1}{6}\\
x - \dfrac{1}{4} = - \dfrac{1}{6}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{6} + \dfrac{1}{4}\\
x = - \dfrac{1}{6} + \dfrac{1}{4}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{5}{{12}}\\
x = \dfrac{1}{{12}}
\end{array} \right.\\
p)\left| {x - \dfrac{2}{3}} \right| = \dfrac{8}{5} - \dfrac{3}{5}\\
\to \left| {x - \dfrac{2}{3}} \right| = 1\\
\to \left[ \begin{array}{l}
x - \dfrac{2}{3} = 1\\
x - \dfrac{2}{3} = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{5}{3}\\
x = - \dfrac{1}{3}
\end{array} \right.\\
s)\left| {x - \dfrac{2}{7}} \right| = \dfrac{5}{6}\\
\to \left[ \begin{array}{l}
x - \dfrac{2}{7} = \dfrac{5}{6}\\
x - \dfrac{2}{7} = - \dfrac{5}{6}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{5}{6} + \dfrac{2}{7}\\
x = - \dfrac{5}{6} + \dfrac{2}{7}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{{47}}{{42}}\\
x = - \dfrac{{23}}{{42}}
\end{array} \right.\\
t)4\left| {\dfrac{1}{2}x - \dfrac{1}{3}} \right| = 1 - \dfrac{5}{6}\\
\to 4\left| {\dfrac{1}{2}x - \dfrac{1}{3}} \right| = \dfrac{1}{6}\\
\to \left| {\dfrac{1}{2}x - \dfrac{1}{3}} \right| = \dfrac{1}{{24}}\\
\to \left[ \begin{array}{l}
\dfrac{1}{2}x - \dfrac{1}{3} = \dfrac{1}{{24}}\\
\dfrac{1}{2}x - \dfrac{1}{3} = - \dfrac{1}{{24}}
\end{array} \right.\\
\to \left[ \begin{array}{l}
\dfrac{1}{2}x = \dfrac{3}{8}\\
\dfrac{1}{2}x = \dfrac{7}{{24}}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{3}{4}\\
x = \dfrac{7}{{12}}
\end{array} \right.
\end{array}\)