Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x \ne 4;x \ne 9\\
x = 16\left( {tmdk} \right)\\
\Leftrightarrow \sqrt x = 4\\
A = \dfrac{{x + 2\sqrt x + 5}}{{\sqrt x - 3}} = \dfrac{{16 + 2.4 + 5}}{{4 - 3}} = 29\\
b)\\
B = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\
= \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
c)P = A:B\\
= \dfrac{{x + 2\sqrt x + 5}}{{\sqrt x - 3}}:\dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
= \dfrac{{x + 2\sqrt x + 5}}{{\sqrt x - 3}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{x + 2\sqrt x + 5}}{{\sqrt x + 1}}\\
= \dfrac{{x + 2\sqrt x + 1 + 4}}{{\sqrt x + 1}}\\
= \dfrac{{{{\left( {\sqrt x + 1} \right)}^2} + 4}}{{\sqrt x + 1}}\\
= \sqrt x + 1 + \dfrac{4}{{\sqrt x + 1}}\\
Do:\sqrt x + 1 > 0\\
Theo\,Co - si:\\
\sqrt x + 1 + \dfrac{4}{{\sqrt x + 1}} \ge 2\sqrt {\left( {\sqrt x + 1} \right).\dfrac{4}{{\sqrt x + 1}}} = 4\\
\Leftrightarrow P \ge 4\\
\Leftrightarrow GTNN:P = 4\\
Khi:\sqrt x + 1 = \dfrac{4}{{\sqrt x + 1}}\\
\Leftrightarrow \sqrt x + 1 = 2\\
\Leftrightarrow \sqrt x = 1\\
\Leftrightarrow x = 1\left( {tmdk} \right)
\end{array}$