Đáp án:
$\begin{array}{l}
a)m + 5 \ne 0\\
\Rightarrow m \ne - 5\\
b)m + 5 > 0\\
\Rightarrow m > - 5\\
c)A\left( {2;3} \right) \in \left( 1 \right)\\
\Rightarrow 3 = \left( {m + 5} \right).2 + 2m - 10\\
\Rightarrow 2m + 10 + 2m - 10 = 3\\
\Rightarrow 4m = 3\\
\Rightarrow m = \dfrac{3}{4}\\
d)\left( {0;9} \right) \in \left( 1 \right)\\
\Rightarrow 9 = \left( {m + 5} \right).0 + 2m - 10\\
\Rightarrow 2m = 19\\
\Rightarrow m = \dfrac{{19}}{2}\\
e)\left( {10;0} \right) \in \left( 1 \right)\\
\Rightarrow 0 = \left( {m + 5} \right).10 + 2m - 10\\
\Rightarrow 10m + 50 + 2m - 10 = 0\\
\Rightarrow 12m = - 40\\
\Rightarrow m = \dfrac{{ - 10}}{3}\\
f)\left( 1 \right)//y = 2x - 1\\
\Rightarrow \left\{ \begin{array}{l}
m + 5 = 2\\
2m - 10 \ne - 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
m = - 3\\
m \ne \dfrac{9}{2}
\end{array} \right.\\
\Rightarrow m = - 3
\end{array}$