Đáp án:
c. C=8
Giải thích các bước giải:
\(\begin{array}{l}
a.A = \dfrac{{\sqrt 3 + \sqrt 2 - 1}}{{2 + \sqrt 6 }} + \dfrac{{\sqrt 2 - \sqrt 3 }}{{\sqrt 2 + 1}}.\left( {\dfrac{{2\sqrt 3 + 3\sqrt 2 + 2\sqrt 3 - 3\sqrt 2 }}{{4 - 6}}} \right) - \dfrac{1}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 3 + \sqrt 2 - 1}}{{2 + \sqrt 6 }} + \dfrac{{\sqrt 2 - \sqrt 3 }}{{\sqrt 2 + 1}}.\dfrac{{4\sqrt 3 }}{{ - 2}} - \dfrac{1}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 3 + \sqrt 2 - 1}}{{2 + \sqrt 6 }} - \dfrac{{\left( {\sqrt 2 - \sqrt 3 } \right).2\sqrt 3 }}{{\sqrt 2 + 1}} - \dfrac{1}{{\sqrt 2 }}\\
= \dfrac{{\left( {\sqrt 3 + \sqrt 2 - 1} \right)\left( {2 - \sqrt 6 } \right)}}{{4 - 6}} - \dfrac{{2\sqrt 6 - 6}}{{\sqrt 2 + 1}} - \dfrac{{\sqrt 2 }}{2}\\
= \dfrac{{2\sqrt 3 + 2\sqrt 2 - 2 - 3\sqrt 2 - 2\sqrt 3 + \sqrt 6 }}{{ - 2}} - \dfrac{{\left( {2\sqrt 6 - 6} \right)\left( {\sqrt 2 - 1} \right)}}{{2 - 1}} - \dfrac{{\sqrt 2 }}{2}\\
= \dfrac{{\sqrt 2 + 2 - \sqrt 6 }}{2} - \dfrac{{4\sqrt 3 - 6\sqrt 2 - 2\sqrt 6 + 6}}{1} - \dfrac{{\sqrt 2 }}{2}\\
= \dfrac{{\sqrt 2 + 2 - \sqrt 6 - 8\sqrt 3 - 12\sqrt 2 - 4\sqrt 6 + 12 - \sqrt 2 }}{2}\\
= \dfrac{{8\sqrt 3 - 5\sqrt 6 - 12\sqrt 2 + 14}}{2}\\
b.B = \left[ {\dfrac{{2\sqrt 3 + 2}}{{3 - 1}} + \dfrac{{3\sqrt 3 + 6}}{{3 - 4}} + \dfrac{{15.3 + 15\sqrt 3 }}{{9 - 3}}} \right].\dfrac{{\sqrt 3 - 5}}{{3 - 5}}\\
= \left( {\dfrac{{2\sqrt 3 + 2}}{2} + \dfrac{{3\sqrt 3 + 6}}{1} + \dfrac{{45 + 15\sqrt 3 }}{6}} \right).\dfrac{{\sqrt 3 - 5}}{{ - 2}}\\
= \dfrac{{6\sqrt 3 + 6 + 18\sqrt 3 + 36 + 45 + 15\sqrt 3 }}{6}.\left( {\dfrac{{\sqrt 3 - 5}}{{ - 2}}} \right)\\
= - \dfrac{{39\sqrt 3 + 87}}{{12}}.\left( {\sqrt 3 - 5} \right)\\
= - \dfrac{{39.3 - 39.5.\sqrt 3 + 87\sqrt 3 - 87.5}}{{12}}\\
= - \dfrac{{ - 108\sqrt 3 - 318}}{{12}}\\
= 9\sqrt 3 + \dfrac{{53}}{2}\\
c.C = \left( {3 + \sqrt 5 } \right).\left( {\sqrt 5 - 1} \right).\sqrt 2 .\sqrt {3 - \sqrt 5 } \\
= \left( {3 + \sqrt 5 } \right).\left( {\sqrt 5 - 1} \right)\sqrt {6 - 2\sqrt 5 } \\
= \left( {3 + \sqrt 5 } \right).\left( {\sqrt 5 - 1} \right)\sqrt {5 - 2\sqrt 5 .1 + 1} \\
= \left( {3 + \sqrt 5 } \right).\left( {\sqrt 5 - 1} \right)\sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \\
= \left( {3 + \sqrt 5 } \right).{\left( {\sqrt 5 - 1} \right)^2}\\
= \left( {3 + \sqrt 5 } \right).\left( {5 - 2\sqrt 5 + 1} \right)\\
= \left( {3 + \sqrt 5 } \right)\left( {6 - 2\sqrt 5 } \right)\\
= 2\left( {3 + \sqrt 5 } \right)\left( {3 - \sqrt 5 } \right)\\
= 2\left( {9 - 5} \right) = 2.4 = 8
\end{array}\)