Đáp án:
$\text{x = (-2) hoặc x = ± $\sqrt{7}$.}$
Giải thích các bước giải:
$\text{($x^3$ + 8).(7 - $x^2$) = 0.}$
$\text{⇒ \(\left[ \begin{array}{l}x^3+8=0.\\7-x^2=0.\end{array} \right.\)}$
$\text{⇒ \(\left[ \begin{array}{l}x^3=0-8.\\x^2=7-0.\end{array} \right.\)}$
$\text{⇒ \(\left[ \begin{array}{l}x^3=-8.\\x^2=7.\end{array} \right.\)}$
$\text{⇒ \(\left[ \begin{array}{l}x^3=(-2)^3.\\x=±\sqrt{7}.\end{array} \right.\)}$
$\text{⇒ \(\left[ \begin{array}{l}x=(-2).\\x=±\sqrt{7}.\end{array} \right.\)}$
$\text{Vậy x = (-2) hoặc x = ± $\sqrt{7}$.}$