\[\begin{array}{l}
y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\\
\Rightarrow y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\\
\Rightarrow y' = 0\\
\Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 = 0\\
\Delta ' = 9{\left( {2m + 1} \right)^2} - 3\left( {12m + 5} \right) = 36{m^2} + 36m + 9 - 36m - 15\\
= 36{m^2} - 6.\\
TH1:\,\,\,Hs\,\,DB\,\,\,tren\,\,\,R\\
\Leftrightarrow \Delta ' < 0 \Leftrightarrow 36{m^2} - 6 < 0 \Leftrightarrow {m^2} < \frac{1}{6} \Leftrightarrow - \frac{1}{{\sqrt 6 }} < m < \frac{1}{{\sqrt 6 }}\\
TH2:\,\,\,Pt\,\,y' = 0\,\,\,co\,\,\,2\,\,\,nghiem\,\,\,pb\\
\Leftrightarrow \Delta ' > 0 \Leftrightarrow \left[ \begin{array}{l}
m > \frac{1}{{\sqrt 6 }}\\
m < - \frac{1}{{\sqrt 6 }}
\end{array} \right..\\
Bang\,\,xet\,\,dau:\\
\,\,\,\,\,\,\,\,\,\,\,\,\, + \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \\
Hs\,\,\,DB\,\,tren\,\,\,\left( {2; + \infty } \right)\\
\Leftrightarrow {x_1} < {x_2} \le 2\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_1} + {x_2} < 4\\
\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2\left( {2m + 1} \right) < 4\\
{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) - 4 \ge 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2m + 1 < 2\\
\frac{{12m + 5}}{3} - 2.2\left( {2m + 1} \right) - 4 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2m < 1\\
12m + 5 - 24m - 12 - 12 \ge 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m < \frac{1}{2}\\
- 12m \ge - 19
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < \frac{1}{2}\\
m \le \frac{{19}}{{12}}
\end{array} \right. \Leftrightarrow m < \frac{1}{2}\\
Ket\,\,hop\,\,voi\,\,dieu\,\,kien\,\,\left[ \begin{array}{l}
m > \frac{1}{{\sqrt 6 }}\\
m < - \frac{1}{{\sqrt 6 }}
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\frac{1}{{\sqrt 6 }} < m < \frac{1}{2}\\
m < - \frac{1}{{\sqrt 6 }}
\end{array} \right..\\
Vay\,\,\,\,m < \frac{1}{2};\,\,m \ne \frac{1}{{\sqrt 6 }}\,\,\,thoa\,\,\,man\,\,bai\,\,toan.
\end{array}\]