`6) 5cos 2x - 12cos 2x = 13`
`<=> -7cos 2x = 13`
`<=> cos 2x = -13/7`
`=>` Phương trình vô nghiệm
`7) cos 7x - sin 5x = sqrt{3}(cos 5x - sin 7x)`
`<=> cos 7x - sin 5x = sqrt{3}cos 5x - sqrt{3}sin 7x`
`<=> sqrt{3}sin 7x + cos 7x = sin 5x + sqrt{3}cos 5x`
`<=> sin (7x + π/6) = sin (5x + π/3)`
`<=>` \(\left[ \begin{array}{l}7x + \dfrac{π}{6} = 5x + \dfrac{π}{3} + k2π\\7x + \dfrac{π}{6} = π - 5x - \dfrac{π}{3} + k2π\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \dfrac{π}{12} + kπ\\x = \dfrac{π}{24} + k\dfrac{π}{6}\end{array} \right.\) `(k ∈ ZZ)`
`8) sin 2x + sin^2 x = 1/2`
`<=> sin 2x + (1 - cos 2x)/2 = 1/2`
`<=> 2sin 2x + 1 - cos 2x - 1 = 0`
`<=> 2sin 2x - cos 2x = 0`
Đặt:
\(\left\{ \begin{array}{l}\dfrac{2}{\sqrt{5}} = cos ∝\\\dfrac{1}{\sqrt{5}} = sin ∝\end{array} \right.\)
`=> cos ∝.sin 2x - sin ∝.cos 2x = 0`
`<=> sin (2x - ∝) = 0`
`<=> 2x - ∝ = kπ`
`<=> x = ∝/2 + k(π)/2` `(k ∈ ZZ)`