Đáp án:
$\begin{array}{l}
c)Dkxd:x \ge 1\\
\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1\\
\Rightarrow \sqrt {x - 1 - 4\sqrt {x - 1} + 4} + \\
\sqrt {x - 1 - 6\sqrt {x - 1} + 9} = 1\\
\Rightarrow \sqrt {{{\left( {\sqrt {x - 1} - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 1} - 3} \right)}^2}} = 1\\
\Rightarrow \left| {\sqrt {x - 1} - 2} \right| + \left| {\sqrt {x - 1} - 3} \right| = 1\\
+ Khi:\sqrt {x - 1} \ge 3 \Rightarrow x \ge 10\\
\Rightarrow \sqrt {x - 1} - 2 + \sqrt {x - 1} - 3 = 1\\
\Rightarrow 2\sqrt {x - 1} = 6\\
\Rightarrow \sqrt {x - 1} = 3\\
\Rightarrow x = 10\left( {tmdk} \right)\\
+ Khi:2 \le \sqrt {x - 1} < 3\\
\Rightarrow 5 \le x < 10\\
\Rightarrow \sqrt {x - 1} - 2 + 3 - \sqrt {x - 1} = 1\\
\Rightarrow 1 = 1\left( {tm} \right)\\
+ Khi:x < 5\\
\Rightarrow 2 - \sqrt {x - 1} + 3 - \sqrt {x - 1} = 1\\
\Rightarrow \sqrt {x - 1} = 2\\
\Rightarrow x = 5\left( {ktm} \right)\\
Vay\,5 \le x \le 10.\\
d)Dkxd:x \ge 2\\
\sqrt {x + 2 - 4\sqrt {x - 2} } + \sqrt {x + 7 - 6\sqrt {x - 2} } = 1\\
\Rightarrow \sqrt {{{\left( {\sqrt {x - 2} - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 2} - 3} \right)}^2}} = 1\\
\Rightarrow \left| {\sqrt {x - 2} - 2} \right| + \left| {\sqrt {x - 2} - 3} \right| = 1\\
+ Khi:\sqrt {x - 2} \ge 3 \Rightarrow x \ge 11\\
\Rightarrow \sqrt {x - 2} - 2 + \sqrt {x - 2} - 3 = 1\\
\Rightarrow \sqrt {x - 2} = 3\\
\Rightarrow x = 11\left( {tmdk} \right)\\
+ Khi:2 \le \sqrt {x - 2} < 3\\
\Rightarrow 6 \le x < 11\\
\Rightarrow \sqrt {x - 2} - 2 + 3 - \sqrt {x - 2} = 1\\
\Rightarrow 1 = 1\left( {tm} \right)\\
+ Khi:x < 6\\
\Rightarrow 2 - \sqrt {x - 2} + 3 - \sqrt {x - 2} = 1\\
\Rightarrow \sqrt {x - 2} = 2\\
\Rightarrow x = 6\left( {ktm} \right)\\
Vay\,6 \le x \le 10\\
e)\sqrt {{x^2} - 10x + 25} + \sqrt {{x^2} + 6x + 9} = 3x - 1\\
\left( {dk:x \ge \dfrac{1}{3}} \right)\\
\Rightarrow \sqrt {{{\left( {x - 5} \right)}^2}} + \sqrt {{{\left( {x + 3} \right)}^2}} = 3x - 1\\
\Rightarrow \left| {x - 5} \right| + \left| {x + 3} \right| = 3x - 1\\
\Rightarrow \left| {x - 5} \right| + x + 3 = 3x - 1\\
\Rightarrow \left| {x - 5} \right| = 2x - 4\left( {dk:x \ge 2} \right)\\
\Rightarrow \left[ \begin{array}{l}
x - 5 = 2x - 4\\
x - 5 = - 2x + 4
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = - 1\left( {ktm} \right)\\
x = 3\left( {tm} \right)
\end{array} \right.\\
Vay\,x = 3\\
g)Dkxd:x \ge 5\\
\sqrt {x - 1 + 4\sqrt {x - 5} } + \sqrt {11 + x + 8\sqrt {x - 5} } = 8\\
\Rightarrow \sqrt {{{\left( {\sqrt {x - 5} + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 5} + 4} \right)}^2}} = 8\\
\Rightarrow \sqrt {x - 5} + 2 + \sqrt {x - 5} + 4 = 8\\
\Rightarrow \sqrt {x - 5} = 1\\
\Rightarrow x - 5 = 1\\
\Rightarrow x = 6\left( {tmdk} \right)
\end{array}$