Đáp án:
`P=1/4`
Giải thích các bước giải:
$P=\dfrac{\sqrt{2+\sqrt{3}}\times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2-\sqrt{2+\sqrt{3}}}}{\sqrt{10+4\sqrt{6}}-\sqrt{10-4\sqrt{6}}}\\P= \dfrac{\sqrt{(2+\sqrt{3})(2+\sqrt{2+\sqrt{3}})(2-\sqrt{2+\sqrt{3}}})}{\sqrt{(2+\sqrt{6})^2}-\sqrt{(2-\sqrt{6})^2}}\\P = \dfrac{\sqrt{(2+\sqrt{3})(4-2-\sqrt{3})}}{2+\sqrt{6}-\sqrt{6}+2}\\P= \dfrac{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}{4}\\P=\dfrac{\sqrt{4-3}}{4}\\P =\dfrac{1}{4}$