Giải hệ phương trình: \( \left \{ \begin{array}{l}{x^2} + {y^2} + x + y = 18 \ \xy \left( {x + 1} \right) \left( {y + 1} \right) = 72 \end{array} \right. \).
A.(x;y)={(3;4),  (4;3);  (4;  2),  (2; 4),  (3;  2),  (2;  3),  (3;3),  (3;  3)}.\left( {x;y} \right) = \left\{ {\left( { - 3; - 4} \right),\;\left( { - 4; - 3} \right);\;\left( {4;\;2} \right),\;\left( {2;\,4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( {3;3} \right),\;\left( { - 3;\; - 3} \right)} \right\}.
B.(x;y)={(3; 4),  (4; 3);  (4;  2),  (2;4),  (3;  2),  (2;  3),  (3;3),  (3;  3)}.\left( {x;y} \right) = \left\{ {\left( {3;\,4} \right),\;\left( {4;\,3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( { - 3;\; - 2} \right),\;\left( { - 2;\; - 3} \right),\;\left( {3; - 3} \right),\;\left( { - 3;\;3} \right)} \right\}.
C.(x;y)={(3; 4),  (4; 3);  (4;  2),  (2;4),  (3;  2),  (2;  3),  (3;3),  (3;  3)}.\left( {x;y} \right) = \left\{ {\left( {3;\,4} \right),\;\left( {4;\,3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( { - 3; - 3} \right),\;\left( {3;\;3} \right)} \right\}.
D.(x;y)={(3;4),  (4;3);  (4;  2),  (2;4),  (3;  2),  (2;  3),  (3;3),  (3;  3)}.\left( {x;y} \right) = \left\{ {\left( { - 3; - 4} \right),\;\left( { - 4; - 3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( {3; - 3} \right),\;\left( { - 3;\;3} \right)} \right\}.

Các câu hỏi liên quan