a) Lay ptrinh(1) - ptrinh (2) ta co
$3(y-x) = \dfrac{(y^2-x^2)(x^2 + y^2 + 2)}{x^2 y^2}$
<->$ 3 (y-x) = \dfrac{(y-x)(y+x)(x^2 + y^2 + 2)}{x^2 y^2}$
<->$y=x$ hoac $3 = \dfrac{(y+x) (x^2 + y^2 + 2)}{x^2 y^2}$.
TH1: y = x
Thay vao ptrinh (1) ta co
$3x = (x^2+2)/x^2$ hay $(x-1)(3x^2 + 2x + 2) = 0$
Vay $x=1$, suy ra $y= 1$. Vay nghiem la $(1,1)$.
TH2: $3 = \dfrac{(y+x)(x^2 + y^2 + 2)}{x^2 y^2}$
b)Ptrinh dau tien tuong duong vs
$x-y+\dfrac{1}{y} - \dfrac{1}{x} = 0$
$(x-y) + \dfrac{x-y}{xy} = 0$
$(x-y)(1+\dfrac{1}{xy}) = 0$
Vay $x=y$ hoac $xy=-1$
TH1: x=y
THay vao ptrinh sau ta co
$x^3-x^2+1=0$
TH2: xy = -1 hay y = -1/x
THay vao ptrinh sau ta co
$x.(-1/x) = x^3+1$
<->$ -1 = x^3+1$
<-> $x^3 = -2$
<-> $x = \sqrt[3]{-2}$
Vay $y = \dfrac{\sqrt[3]{4}}{-2}$
Vay nghiem la $(\sqrt[3]{-2}, \dfrac{\sqrt[3]{4}}{-2})$.