Đáp án:
$\begin{array}{l}
+ )\frac{{3y\left( {x + 1} \right) - 6x - 6}}{{3y - 6}} = \frac{{3y\left( {x + 1} \right) - 6\left( {x + 1} \right)}}{{3\left( {y - 2} \right)}}\\
= \frac{{3\left( {x + 1} \right)\left( {y - 2} \right)}}{{3\left( {y - 2} \right)}} = x + 1\\
+ )\frac{{2\left( {y + 3} \right) + 2xy + 6x}}{{2y + 6}} = \frac{{2\left( {y + 3} \right) + 2x\left( {y + 3} \right)}}{{2\left( {y + 3} \right)}}\\
= \frac{{2\left( {y + 3} \right)\left( {x + 1} \right)}}{{2\left( {y + 3} \right)}} = x + 1\\
\Rightarrow \frac{{3y\left( {x + 1} \right) - 6x - 6}}{{3y - 6}} = \frac{{2\left( {y + 3} \right) + 2xy + 6x}}{{2y + 6}}\left( { = x + 1} \right)
\end{array}$