Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
c.\left\{ \begin{array}{l}
x > - \frac{1}{2}\\
x > 1\\
{x^2} - 2x + 1 \le 4{x^2} + 4x + 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x > 1\\
x \in \left( { - \infty ; - 2} \right] \cup \left[ {0; + \infty } \right)
\end{array} \right.\\
\to x \in \left( {1; + \infty } \right)\\
d.\left| { - 2x + 1} \right| < 5 - x\\
\to \left\{ \begin{array}{l}
x < 5\\
x < \frac{1}{2}\\
1 - 4x + 4{x^2} < 25 - 10x + {x^2}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x < \frac{1}{2}\\
x \in \left( { - 4;2} \right)
\end{array} \right.\\
\to x \in \left( { - 4;\frac{1}{2}} \right)
\end{array}\)