Đáp án:
\(\begin{array}{l}
B19:\\
a)A = - \dfrac{2}{{x + 2}}\\
b)MinA = - 2
\end{array}\)
\(\begin{array}{l}
B20:\\
a)x \ge 0;x \ne 1
\end{array}\)
b) \(\dfrac{2}{{{x^2} + x + 1}}\)
c) Không tồn tại x để A đạt GTLN
\(\begin{array}{l}
B21:\\
a)M = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
b)x = 16\\
c)\left[ \begin{array}{l}
x = 49\\
x = 25\\
x = 1\\
x = 16
\end{array} \right.
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B19:\\
a)A = \dfrac{{\sqrt x + 1 - \sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}.\dfrac{{\left( {1 - \sqrt x } \right)\left( {\sqrt x + 1} \right)}}{{x + 2}}\\
= - \dfrac{2}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{x + 2}}\\
= - \dfrac{2}{{x + 2}}\\
b)A\min \\
\Leftrightarrow \dfrac{2}{{x + 2}}\max \\
\Leftrightarrow (x + 2)\min \\
\to x + 2 = 1\\
\to x = - 1\\
\to MinA = - \dfrac{2}{{ - 1 + 2}} = - 2\\
B20:\\
a)DK:x \ge 0;x \ne 1\\
b)A = \dfrac{{2{x^2} + 4}}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}} + \dfrac{{ - 1 + \sqrt x - 1 - \sqrt x }}{{1 - x}}\\
= \dfrac{{2{x^2} + 4}}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}} - \dfrac{2}{{1 - x}}\\
= \dfrac{{2{x^2} + 4 - 2\left( {{x^2} + x + 1} \right)}}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}}\\
= \dfrac{{2{x^2} + 4 - 2{x^2} - 2x - 2}}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}}\\
= \dfrac{{2 - 2x}}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}}\\
= \dfrac{2}{{{x^2} + x + 1}}\\
c)A = \dfrac{2}{{{x^2} + x + 1}} = \dfrac{2}{{{x^2} + 2.x.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}}}\\
= \dfrac{2}{{{{\left( {x + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}}\\
Do:{\left( {x + \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\
\to \dfrac{2}{{{{\left( {x + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \le \dfrac{8}{3}\\
\to Max = \dfrac{8}{3}\\
\Leftrightarrow x = - \dfrac{1}{2}\left( {KTM} \right)
\end{array}\)
⇒ Không tồn tại x để A đạt GTLN
\(\begin{array}{l}
B21:\\
a)M = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}}\\
= \dfrac{{2\sqrt x - 9 + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right) - \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{2\sqrt x - 9 + 2x - 3\sqrt x - 2 - x + 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
b)M = 5\\
\to \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} = 5\\
\to \sqrt x + 1 = 5\left( {\sqrt x - 3} \right)\\
\to 4\sqrt x = 16\\
\to x = 16\\
c)M = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} = \dfrac{{\sqrt x - 3 + 4}}{{\sqrt x - 3}}\\
= 1 + \dfrac{4}{{\sqrt x - 3}}\\
M \in Z \to \dfrac{4}{{\sqrt x - 3}} \in Z\\
\to \sqrt x - 3 \in U\left( 4 \right)\\
\to \left[ \begin{array}{l}
\sqrt x - 3 = 4\\
\sqrt x - 3 = 2\\
\sqrt x - 3 = - 2\\
\sqrt x - 3 = 1\\
\sqrt x - 3 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 49\\
x = 25\\
x = 1\\
x = 16\\
x = 4\left( l \right)
\end{array} \right.
\end{array}\)
( câu 21 sửa \(\sqrt {x + 3} \) thành \({\sqrt x + 3}\) mới rút gọn được nha )