Giải thích các bước giải:
a) Ta có:
$\begin{array}{l}
M = \left( {\dfrac{1}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }}} \right)\left( {\dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} - \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}}} \right)\left( {DK:x \ge 0;x \ne \left\{ {0;1;4} \right\}} \right)\\
= \dfrac{{\sqrt x - \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\sqrt x }}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\dfrac{3}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{3}{{\sqrt x \left( {\sqrt x - 2} \right){{\left( {\sqrt x - 1} \right)}^2}}}\\
= \dfrac{3}{{\left( {x - 2\sqrt x } \right)\left( {x - 2\sqrt x + 1} \right)}}
\end{array}$
Vậy $M = \dfrac{3}{{\left( {x - 2\sqrt x } \right)\left( {x - 2\sqrt x + 1} \right)}}$ với ${x \ge 0;x \ne \left\{ {0;1;4} \right\}}$
b) Ta có:
$\begin{array}{l}
M = \dfrac{1}{3}\\
\Leftrightarrow \dfrac{3}{{\left( {x - 2\sqrt x } \right)\left( {x - 2\sqrt x + 1} \right)}} = \dfrac{1}{3}\\
\Leftrightarrow \left( {x - 2\sqrt x } \right)\left( {x - 2\sqrt x + 1} \right) - 9 = 0\\
\Leftrightarrow {\left( {x - 2\sqrt x } \right)^2} + \left( {x - 2\sqrt x } \right) - 9 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 2\sqrt x = \dfrac{{ - 1 + \sqrt {37} }}{2}\left( {c;Do:x - 2\sqrt x \ge - 1} \right)\\
x - 2\sqrt x = \dfrac{{ - 1 - \sqrt {37} }}{2}\left( {l;Do:x - 2\sqrt x \ge - 1} \right)
\end{array} \right.\\
\Leftrightarrow x - 2\sqrt x = \dfrac{{ - 1 + \sqrt {37} }}{2}\\
\Leftrightarrow {\left( {\sqrt x } \right)^2} - 2\sqrt x + \dfrac{{1 - \sqrt {37} }}{2} = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x = 1 + \sqrt {\dfrac{{1 + \sqrt {37} }}{2}} \left( c \right)\\
\sqrt x = 1 - \sqrt {\dfrac{{1 + \sqrt {37} }}{2}} \left( l \right)
\end{array} \right.\\
\Leftrightarrow \sqrt x = 1 + \sqrt {\dfrac{{1 + \sqrt {37} }}{2}} \\
\Leftrightarrow x = {\left( {1 + \sqrt {\dfrac{{1 + \sqrt {37} }}{2}} } \right)^2} (tm)
\end{array}$
Vậy $x = {\left( {1 + \sqrt {\dfrac{{1 + \sqrt {37} }}{2}} } \right)^2}$