Em tách từng câu ra hỏi nhé
\(\begin{array}{l}
4)\,A = \frac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}}\\
= \frac{{2\sqrt x - 9 - \left( {x - 9} \right) + 2x - 4\sqrt x + \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \frac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \frac{{\sqrt x + 1}}{{\sqrt x - 3}}
\end{array}\)