Đáp án:
$1)A = 8\sqrt 2 ;B = - 4\sqrt {x + 1} $
$2)a) $ Không tồn tại $x$; $b)x=1$; $c)x=3$
$3)$$a)\dfrac{{\sqrt {10} }}{5};b)\sqrt a $
Giải thích các bước giải:
$\begin{array}{l}
1)\\
+ )A = \sqrt {32} + \sqrt {50} - 2\sqrt 8 + \sqrt {18} \\
= \sqrt {16.2} + \sqrt {25.2} - 2.\sqrt {4.2} + \sqrt {9.2} \\
= 4\sqrt 2 + 5\sqrt 2 - 2.2.\sqrt 2 + 3\sqrt 2 \\
= 8\sqrt 2 \\
+ )B = \sqrt {16x + 16} - 9\sqrt {x + 1} + \dfrac{1}{5}\sqrt {25x + 25} \left( {DK:x \ge - 1} \right)\\
= \sqrt {16\left( {x + 1} \right)} - 9\sqrt {x + 1} + \dfrac{1}{5}\sqrt {25\left( {x + 1} \right)} \\
= 4\sqrt {x + 1} - 9\sqrt {x + 1} + \dfrac{1}{5}.5\sqrt {x + 1} \\
= - 4\sqrt {x + 1}
\end{array}$
$2)$
a) Ta có:
$\sqrt {4x - 20} - 3\sqrt {\dfrac{{x - 5}}{9}} = \sqrt {1 - x} $ có nghĩa
$ \Leftrightarrow \left\{ \begin{array}{l}
4x - 20 \ge 0\\
x - 5 \ge 0\\
1 - x \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 5\\
x \le 1
\end{array} \right. \Leftrightarrow 5 \le x \le 1\left( {mt} \right)$
b)${DK:x \ge \dfrac{1}{2}}$
Ta có:
$\begin{array}{l}
\sqrt {50x - 25} + \sqrt {8x - 4} - 3\sqrt x = \sqrt {72x - 36} - \sqrt {4x} \\
\Leftrightarrow \sqrt {25\left( {2x - 1} \right)} + \sqrt {4\left( {2x - 1} \right)} - 3\sqrt x = \sqrt {36\left( {2x - 1} \right)} - 2\sqrt x \\
\Leftrightarrow 5\sqrt {2x - 1} + 2\sqrt {2x - 1} - 3\sqrt x = 6\sqrt {2x - 1} - 2\sqrt x \\
\Leftrightarrow 5\sqrt {2x - 1} + 2\sqrt {2x - 1} - 6\sqrt {2x - 1} = 3\sqrt x - 2\sqrt x \\
\Leftrightarrow \sqrt {2x - 1} = \sqrt x \\
\Leftrightarrow 2x - 1 = x\\
\Leftrightarrow x = 1\left( {tm} \right)
\end{array}$
c) ${DK:x \ge 3}$
Ta có:
$\begin{array}{l}
\sqrt {{x^2} - 9} - \sqrt {4x - 12} = 0\\
\Leftrightarrow \sqrt {\left( {x - 3} \right)\left( {x + 3} \right)} - \sqrt {4\left( {x - 3} \right)} = 0\\
\Leftrightarrow \sqrt {x - 3} .\sqrt {x + 3} - 2\sqrt {x - 3} = 0\\
\Leftrightarrow \sqrt {x - 3} \left( {\sqrt {x + 3} - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x - 3} = 0\\
\sqrt {x + 3} - 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 3\\
x + 3 = 4
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 3\left( c \right)\\
x = 1\left( l \right)
\end{array} \right.\\
\Leftrightarrow x = 3
\end{array}$
$3)$
$a)\sqrt {\dfrac{2}{5}} = \dfrac{{\sqrt 2 }}{{\sqrt 5 }} = \dfrac{{\sqrt 2 .\sqrt 5 }}{{\sqrt 5 .\sqrt 5 }} = \dfrac{{\sqrt {10} }}{5}$
$\begin{array}{l}
b)DK:a > 0\\
a\sqrt {\dfrac{1}{a}} = \dfrac{a}{{\sqrt a }} = \sqrt a
\end{array}$