Đáp án:
Giải thích các bước giải:
$\left\{\begin{array}{l}\frac{1}{x-2y}+x+2y=5\\\frac{x+2y}{x-2y}=6\end{array}\right.\\\Leftrightarrow \left\{\begin{array}{l}x^2-5x-4y^2+10y+1=0\\-5x+14y=0\end{array}\right.\\\Leftrightarrow y=\frac{5x}{14}\\\Leftrightarrow x^2-5x-4(\frac{5x}{14})^2+10(\frac{5x}{14})+1=0\\\Leftrightarrow \frac{24x^2}{49}-\frac{10x}{7}+1=0\\\Leftrightarrow \frac{1}{49}(6x-7)(4x-7)=0\\\Leftrightarrow \left[\begin{array}{l}x=\frac{7}{6}\\x=\frac{7}{4}\end{array}\right.\\\Rightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x=\frac{7}{6}\\y=\frac{5}{12}\end{array}\right.\\\left\{\begin{array}{l}x=\frac{7}{4}\\y=\frac{5}{8}\end{array}\right.\end{array}\right.$