\[\begin{array}{l}
\left\{ \begin{array}{l}
2{x^2} - 4x + \sqrt {y + 1} = 0\\
3{x^2} - 6x - 2\sqrt {y + 1} = - 7
\end{array} \right.\\
DK:\,\,\,y \ge - 1.\\
HPt \Leftrightarrow \left\{ \begin{array}{l}
2\left( {{x^2} - 2x} \right) + \sqrt {y + 1} = 0\\
3\left( {{x^2} - 2x} \right) - 2\sqrt {y + 1} = - 7
\end{array} \right.\\
Dat\,\,\left\{ \begin{array}{l}
a = {x^2} - 2x\\
b = \sqrt {y + 1} \,\,\,\left( {b \ge 0} \right)
\end{array} \right.\\
\Rightarrow hpt \Leftrightarrow \left\{ \begin{array}{l}
2a + b = 0\\
3a - 2b = - 7
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = - 1\\
b = 2\,\,\,\,\left( {tm} \right)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} - 2x = - 1\\
\sqrt {y + 1} = 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} - 2x + 1 = 0\\
y + 1 = 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 1} \right)^2} = 0\\
y = 3\,\,\left( {tm} \right)
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1\\
y = 3
\end{array} \right..\\
Vay\,\,hpt\,\,\,co\,\,nghiem\,\,\,\left( {x;\,\,y} \right) = \left( {1;\,\,3} \right).
\end{array}\]