Đáp án:
`a)S={x|x<-1/2}`
`b)S={x|x≤4037}`
Giải thích các bước giải:
`a)(x-3)²-(x+3)²>6`
`⇔x²-6x+9-(x²+6x+9)>6`
`⇔x²-6x+9-x²-6x-9>6`
`⇔x²-6x-x²-6x>6-9+9`
`⇔-12x>6`
`⇔x<-1/2`
Vậy `S={x|x<-1/2}`
`b)(x-2018)/(-2019)≤(x-2019)/(-2018)`
`⇔[(-2018)(x-2018)]/[(-2018).(-2019)]≤[(-2019)(x-2019)]/[(-2018).(-2019)]`
`⇒(-2018)(x-2018)≤(-2019)(x-2019)`
`⇔-2018x+4072324≤-2019x+4076361`
`⇔-2018x+2019x≤4076361-4072324`
`⇔x≤4037`
Vậy `S={x|x≤4037}`