Đáp án:
`a, |x + 1/3| = 0`
`⇔ x + 1/3 =0`
`⇔ x = 0 - 1/3`
`⇒ x = -1/3`
Vậy `x = -1/3`
`a, 2|x - 1/2| -1/8 = 0`
`⇔ 2|x - 1/2| = 0 + 1/8 = 1/8`
`⇔ |x - 1/2| = 1/8 : 2 = 1/8 . 1/2`
`⇔ |x - 1/2| = 1/16`
`⇒` $\left[\begin{matrix} x -\dfrac{1}{2} = \dfrac{1}{16}\\ x-\dfrac{1}{2}=\dfrac{-1}{16}\end{matrix}\right.$ `⇒` $\left[\begin{matrix} x =\dfrac{1}{16} + \dfrac{1}{2}\\ x=\dfrac{-1}{16}+\dfrac{1}{2}\end{matrix}\right.$ `⇒` $\left[\begin{matrix} x = \dfrac{9}{16}\\ x=\dfrac{7}{16}\end{matrix}\right.$
Vậy `x = 7/16` hoặc `x = 9/16`
`a, - 5/6 - 3|2 - x| = 1/3`
`⇔ 3|2 - x| = -5/6 - 1/3`
`⇔ 3|2 - x| = -7/6`
`⇔ |2 - x| = -7/6 : 3 = -7/6 . 1/3`
`⇔ |2 - x| = -7/18`
Mà: `|2 - x| ≥ 0` với mọi `x`
`-7/18 < 0`
Nên không có `x` thỏa mãn