$\text{Đáp án + Giải thích các bước giải:}$
`1//(3x-7).(x+5)=x+5`
`<=>(3x-7).(x+5)-(x+5)=0`
`<=>(x+5)(3x-7-1)=0`
`<=>(x+5)(3x-8)=0`
`<=>` \(\left[ \begin{array}{l}x+5=0\\3x-8=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-5\\x=\dfrac{8}{3}\end{array} \right.\)
`\text{Vậy}` `S={-5;(8)/(3)}`
`2//(x)/(2x-6)+(x)/(2x+2)=(-2x)/((3-x)(x+1))` `(ĐKXĐ:x\ne{3;-1})`
`<=>(x)/(2(x-3))+(x)/(2(x+1))=(2x)/((x-3)(x+1))`
`<=>(x(x+1))/(2(x-3)(x+1))+(x(x-3))/(2(x+1)(x-3))=(4x)/(2(x-3)(x+1))`
`=>x(x+1)+x(x-3)=4x`
`<=>x^{2}+x+x^{2}-3x-4x=0`
`<=>2x^{2}-6x=0`
`<=>2x(x-3)=0`
`<=>` \(\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0(TM)\\x=3(KTM)\end{array} \right.\)
`\text{Vậy}` `S={0}`