Đáp án:
Giải thích các bước giải:
$\dfrac{2x+1}{x-1}$ = $\dfrac{5x - 5}{x+1}$
⇔ $\dfrac{(2x+1)(x+1)}{(x-1)(x+1)}$ = $\dfrac{(5x - 5)(x-1)}{(x-1)(x+1)}$
⇔ $(2x+1)(x+1) = (5x-5)(x-1)$
⇔ $2x² + 3x + 1 = 5x² - 10x + 5 $
⇔ $3x² - 13x + 4 = 0$
⇔ $(x-4)(3x-1)$ = $0$
⇔ \(\left[ \begin{array}{l}x-4=0\\3x-1=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=4\\x = 1/3\end{array} \right.\)