Giải phương trình \({x^2} + \frac{{{x^2}}}{{{{\left( {x + 1} \right)}^2}}} = 1\).
A.\(\left[ \begin{array}{l}{x_1} = \frac{{\sqrt 2  + 1 + \sqrt {2\sqrt 2  - 1} }}{2}\\{x_2} = \frac{{\sqrt 2  + 1 - \sqrt {2\sqrt 2  - 1} }}{2}\end{array} \right.\)
B.\(\left[ \begin{array}{l}{x_1} = \frac{{\sqrt 2  - 1 + \sqrt {2\sqrt 2  - 1} }}{2}\\{x_2} = \frac{{\sqrt 2  - 1 - \sqrt {2\sqrt 2  - 1} }}{2}\end{array} \right.\)
C.\(\left[ \begin{array}{l}{x_1} = \frac{{\sqrt 2  - 1 + \sqrt {2\sqrt 2  + 1} }}{2}\\{x_2} = \frac{{\sqrt 2  - 1 - \sqrt {2\sqrt 2  + 1} }}{2}\end{array} \right.\)
D.\(\left[ \begin{array}{l}{x_1} = \frac{{\sqrt 2  + 1 + \sqrt {2\sqrt 2  + 1} }}{2}\\{x_2} = \frac{{\sqrt 2  + 1 - \sqrt {2\sqrt 2  + 1} }}{2}\end{array} \right.\)

Các câu hỏi liên quan