Đáp án:
\(\left[ \begin{array}{l}
x = - \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)
Giải thích các bước giải:
\(\begin{array}{l}
\frac{{3\left( {\cos x + \cot x} \right)}}{{\cot x - \cos x}} - 2\sin x = 2\\
DK:\,\,\,\left\{ \begin{array}{l}
\sin x \ne 0\\
\cot x - \cos x \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x\left( {1 - \sin x} \right) \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right. \Leftrightarrow \sin 2x \ne 0\\
pt \Leftrightarrow \frac{{3\left( {\cos x + \cot x} \right)}}{{\cot x - \cos x}} = 2 + 2\sin x\\
\Leftrightarrow 3\left( {\cos x + \cot x} \right) = \left( {2\sin x + 2} \right)\left( {\cot x - \cos x} \right)\\
\Leftrightarrow 3\left( {\cos x + \frac{{\cos x}}{{\sin x}}} \right) = \left( {2\sin x + 2} \right)\left( {\frac{{\cos x}}{{\sin x}} - \cos x} \right)\\
\Leftrightarrow 3\left( {\sin x.\cos x + \cos x} \right) = \left( {2\sin x + 2} \right)\left( {\cos x - \sin x\cos x} \right)\\
\Leftrightarrow 3\cos x\left( {\sin x + 1} \right) = 2\left( {\sin x + 1} \right)\cos x\left( {1 - \sin x} \right)\\
\Leftrightarrow \cos x\left[ {3\left( {\sin x + 1} \right) - 2\left( {\sin x + 1} \right)\left( {1 - \sin x} \right)} \right] = 0\\
\Leftrightarrow 3\left( {\sin x + 1} \right) - 2\left( {\sin x + 1} \right)\left( {1 - \sin x} \right) = 0\,\,\,\,\left( {do\,\,\,\cos x \ne 0} \right)\\
\Leftrightarrow \left( {\sin x + 1} \right)\left( {3 - 2 + 2\sin x} \right) = 0\\
\Leftrightarrow \left( {\sin x + 1} \right)\left( {1 + 2\sin x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - 1\,\,\,\left( {ktm\,\,\,do\,\,\cos x \ne 0} \right)\\
\sin x = - \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi
\end{array} \right.\,\,\,\left( {k \in Z} \right).
\end{array}\)