`5/(3x+2)=2x-1` `(x\ne-2/3)`
`<=>5/(3x+2)=((2x-1)(3x+2))/(3x+2)`
`=>(2x-1)(3x+2)=5`
`<=>6x^2+x-2=5`
`<=>6x^2+x-7=0`
`<=>6x^2-6x+7x-7=0`
`<=>6x(x-1)+7(x-1)=0`
`<=>(6x+7)(x-1)=0`
`<=>` \(\left[ \begin{array}{l}6x+7=0\\x-1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{7}{6}(\text{thoả mãn})\\x=1(\text{thoả mãn})\end{array} \right.\)
Vậy `\text{S}={-7/6;1}`