Giải thích các bước giải:
1, Đặt sin x = t (-1≤t≤1) ⇒ pt ⇔ \(3t^2 + 2t -1 =0\) ⇔ t = $\frac{-1}{3}$ hoặc t = -1
với t = $\frac{-1}{3}$ ⇒ sinx = $\frac{-1}{3}$ ⇒ x = ..... với t = -1 ⇒ sinx = -1 ⇒ x = $\frac{\pi}{2}$ +k$\pi$
Đặt tanx = t pt ⇔ \(t^2 - 2t +1\) = 0 ⇒ t = 1 ⇒ tanx =1 ⇒ x= $\frac{\pi}{4}$ +k$\pi$